Influence function-based empirical likelihood and generalized confidence intervals for the Lorenz curve

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical likelihood based confidence intervals for copulas

Copula as an effective way of modeling dependence has become more or less a standard tool in risk management, and a wide range of applications of copula models appear in the literature of economics, econometrics, insurance, finance, etc. How to estimate and test a copula plays an important role in practice, and both parametric and nonparametric methods have been studied in the literature. In th...

متن کامل

Semi-Empirical Likelihood Confidence Intervals for the ROC Curve with Missing Data

The receiver operating characteristic (ROC) curve is one of the most commonly used methods to compare the diagnostic performances of two or more laboratory or diagnostic tests. In this thesis, we propose semi-empirical likelihood based confidence intervals for ROC curves of two populations, where one population is parametric while the other one is non-parametric and both populations have missin...

متن کامل

Smoothed weighted empirical likelihood ratio confidence intervals for quantiles

Thus far, likelihood-based interval estimates for quantiles have not been studied in the literature on interval censored case 2 data and partly interval censored data, and, in this context, the use of smoothing has not been considered for any type of censored data. This article constructs smoothed weighted empirical likelihood ratio confidence intervals (WELRCI) for quantiles in a unified frame...

متن کامل

Empirical Likelihood Confidence Intervals for Nonparametric Functional Data Analysis

We consider the problem of constructing confidence intervals for nonparametric functional data analysis using empirical likelihood. In this doubly infinite-dimensional context, we demonstrate the Wilks’s phenomenon and propose a bias-corrected construction that requires neither undersmoothing nor direct bias estimation. We also extend our results to partially linear regression involving functio...

متن کامل

Empirical likelihood confidence intervals for complex sampling designs

We define an empirical likelihood approach which gives consistent design-based confidence intervals which can be calculated without the need of variance estimates, design effects, resampling, joint inclusion probabilities and linearization, even when the point estimator is not linear. It can be used to construct confidence intervals for a large class of sampling designs and estimators which are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Methods & Applications

سال: 2019

ISSN: 1618-2510,1613-981X

DOI: 10.1007/s10260-019-00482-w